Товар добавлен
в корзину
+7 (4852) 93-63-53
mail@strprofi.ru
WhatsApp: +7(951)-283-63-53
г. Ярославль, Ленинградский пр-т, д.33
офис: 501 5-й этаж
магазин-склад: модуль 109 1-й этаж
Войти Регистрация
График работы магазина в праздничные дни:              27 апреля - 8:30 - 18:00              28 апреля - выходной              29,30 апреля - 10:00 - 16:00              1 мая - выходной              2,3 мая - 8:30 - 18:00              4 мая - 10:00 - 16:00              5 мая - выходной              6,7,8 мая - 8:30 - 18:00              9 мая - выходной              10,11 мая - 10:00 - 16:00              12 мая - выходной

Баннер 1
Система Orphus

Высокопрочный крепеж

Вернуться в оглавление



ВЫСОКОПРОЧНЫЙ КРЕПЁЖ


Высокопрочный крепеж

Высокопрочными болтами чаще всего называют болты с классом прочности 10.9 и 12.9 по ГОСТ ISO 898-1-2014. Высокопрочными гайками – гайки с классом прочности 10 и 12. Система классификации болтов по классам прочности согласно ГОСТ ISO 898-1-2014 позволяет оценить их механические свойства. Этот простой критерий для означает, что предел прочности болта будет не меньше 1000 МПа. При этом важно учесть, что стандарт не ограничивает производителя марками сталей и видами термообработки готовых крепежных изделий, главное требование - это соответствие заявленным механическим характеристикам, например, твердость и предел прочности при растяжении, а также ограничениям по химическому составу сплавов. Высокопрочные крепёжные изделия широко применяются в тех случаях, когда нагрузки на болтовое соединение слишком велики для классов прочности 8.8 и ниже, а также для уменьшения количества или размера болтовых соединений в конструкции. Это возможно потому, что допустимые осевые нагрузки на болты класса прочности 10.9 примерно на 40% выше, чем для болтов того же размера класса прочности 8.8, а для класса прочности 12.9 – на 65%.

ПРИМЕНЕНИЕ ВЫСОКОПРОЧНЫХ БОЛТОВ И ГАЕК

Шайба стопорная с наружными зубцами

Применение высокопрочных болтов и гаек позволяет получить большие осевые усилия в болтовом соединении, прилагая увеличенный момент затяжки. Это позволяет с успехом использовать высокопрочный крепёж для защиты болтового соединения от самоотвинчивания, так как большие осевые усилия предварительного натяжения в соединении защищают его от ослабления в процессе эксплуатации, в статическом состоянии и при вибрации. Широко распространенные пружинные гроверные шайбы по DIN 127 (аналог ГОСТ 6402-70) применяются только с низкими классами прочности, а в соединениях с высокопрочными болтами они не эффективны. Поэтому для высокопрочного крепежа применяют зубчатые и стопорно-клиновые шайбы. Варианты зубчатых шайб для крепежа классом прочности 10.9: ART 88121 Шайба стопорная с наружными зубцами  Schnorr VS и ART 88123… ART 88126 Шайба стопорная с насечкой TECKENTRUP. Для крепежа классом прочности 12.9 рекомендуется применять стопорно-клиновые шайбы DIN 25201 (Nord-Lock, Heico-Lock). Альтернативный вариант стопорения резьбовых соединений заключается в применении химических анаэробных фиксаторов. Резьбовые энаэробные фиксаторы наносятся на резьбу соединяемых деталей перед сборкой и после отверждения обеспечивают высокую прочность клеевого шва и крутящий момент для ослабления резьбы до 75 Нм.

Высокопрочные болты часто называют закаленными или черными. Это связано с тем, что при их изготовлении производится такой вид термообработки как закалка с охлаждением в масле, результатом которой является темный, практически черный цвет металла. Однако этот критерий не является определяющим, потому что и высокопрочные болты, и болты низких классов прочности могут иметь черный цвет, как в следствии термообработки, так и из-за защитного покрытия черного цвета: фосфатирования или химического оксидирования. Для высокопрочного крепежа фосфатирование является самым распространенным вариантом защитного покрытия. Фосфатирование обладает очень слабыми антикоррозионными свойствами и его нельзя рассматривать как самостоятельную и достаточную защиту крепежа от коррозии для применения на открытом воздухе или во влажной среде, только с последующим окрашиванием или дополнительным защитным покрытием. Задача по защите болтового соединения от коррозии и повышенных температур в резьбовом соединении может быть также успешно решена с помощью монтажных паст и смазок, например, медной или керамической смазок. Для эксплуатации крепежных изделий в помещении достаточно гальванического цинкования, а на открытом воздухе необходимо нанесение цинк-ламельных покрытий. При этом важно учесть, что изделия с классом прочности 12.9 не оцинковывают, это связано с появлением водородного охрупчивания термообработанных сталей при нанесении покрытий гальваническим способом. Но даже с цинк-ламельным покрытием головка болта может подвергаться коррозионному разрушению, так как при сборке болтового соединения защитное покрытие может быть повреждено механически от воздействия ручного инструмента. Восстановить защитное покрытие можно после сборки узла с помощью цинксодержащей краски.

КЛАССЫ ПРОЧНОСТИ ВЫСОКОПРОЧНОГО КРЕПЕЖА

КЛАСС ПРОЧНОСТИ БОЛТОВ, ВИНТОВ И ШПИЛЕК ТВЕРДОСТЬ ШАЙБ
8.8 и менее 200 HV
10.9 300 HV
12.9 380 HV


КЛАСС ПРОЧНОСТИ БОЛТОВ, ВИНТОВ И ШПИЛЕК КЛАСС ПРОЧНОСТИ ГАЕК
10.9 10
12.9 12

Важным условием надежной и долговечной работы ботового соединения на основе высокопрочного крепежа является правильный подбор комплекта: болт, гайка и плоская шайба. Класс прочности гаек подбирают под класс прочности болтов, при этом для обеспечения максимальной нагрузочной способности резьбового соединения рекомендуется чтобы класс прочности гаек совпадал с классом прочности болта. Для правильного выбора плоских шайб для резьбовых соединений необходимо руководствоваться требованиями стандартов ISO 7089, ISO 7090 и ISO 7093. Твердость шайб должна быть достаточна для восприятия усилий сжатия при затяжке резьбы и не должно происходить деформации шайбы в процессе эксплуатации и, соответственно, ослабления усилия затяжки болтового соединения.

Можно ли определить марку стали из которой изготовлен высокопрочный крепёж? Чтобы ответить на этот вопрос нужно отталкиваться от данных ГОСТ ISO 898-1-2014 для болтов, винтов и ГОСТ ISO 898-2-2015 для гаек на механические свойства крепёжных изделий, там указано что высокопрочный крепёж должен быть изготовлен из закалённой углеродистой или легированной стали. Получается, что мы не знаем точно из какой марки стали изготовлен крепёж, но мы точно знаем, что класс прочности нам гарантирует определенный диапазон его механических свойств. Выбор марок сталей у производителя высокопрочного крепежа достаточно широк и можно ориентироваться на данные этой таблицы. Не должно смущать что, например, сталь 35ХГСА попадает в оба класса прочности, так как подразумевается, что для разных классов прочности будут использованы разные режимы термообработки: закалка и отпуск.

КЛАСС ПРОЧНОСТИ МАРКА СТАЛИ
10.9 45Г, 40Г2, 40Х, 40Х Селект, 30ХГСА, 35ХГСА
12.9 30ХГСА, 35ХГСА, 40ХНМА

Распространение высокопрочного крепежа связано с тем, что его применение в ответственных конструкциях позволяет инженерам решать сложные задачи связанные с ослаблением усилия затяжки болтовых соединений и появления в них опасных срезающих нагрузок. Причинами такого нарушения работы болтовых соединений являются:

  • большой перепад температур и, как следствие, температурные деформации металлических конструкций, которые вызывают серьезные изменения геометрии узла;
  • низкая прочность материала болта и шайбы приводит к их деформированию и появлению зазоров в соединении.

Большинство из этих задач можно успешно решать, применяя болты классом прочности 10.9 и 12.9 вместо классов прочности 8.8 и меньше. В этом случае высокие осевые усилия в болтовом соединении позволяют с успехом создавать необходимые условия надежной работы узла.

Высокопрочный крепёж, благодаря своим высоким нагрузочным характеристикам, нашел широкое применение в различных сферах машиностроения и строительства:

  • сельскохозяйственная техника и грузовой транспорт: трактора, тягачи, прицепы;
  • промышленное и энергетическое оборудование: станки, генераторы, турбины, насосы;
  • строительная техника: экскаваторы, бульдозеры, краны;
  • строительные металлоконструкции.




В начало страницы

Вернуться в оглавление